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MULTIMODE BIFURCATIONS OF ELASTIC EQUILIBRIA®

YU.I. SAPRONOV

Conservative elastic systems with parallelepiped symmetry are considered, for which a
study of the postcritical equilibria reduces (by the Lyapunov-Schmidt method) to the analysis
of extremals of functions of the form

Wiy, ooz, M) =M 2+ By jrle 4

where H = (k) is a symmetric matrix with non-degenerate principle {(diagonal) minors. A
relationship is written down for which the matrix H is determined by Ritz approximations of
the total energy functional constructed by means of the fundamental bifurcation modes. In the
case of soft buckling and for ind H =0 or n—1(ind is the number of negative eigenvalues
taking multiplicity into account) all the allowable types and quantities of bifurcating stable
equilibriums are listed. It is shown that after soft buckling with breaking of symmetry,
cascade bifurcations are possible (cascade bifurcations simulate the postcritical series of
snappings accompanied by a drop in the load /1, 2/). Two known examples of soft buckling and
one new example of hard buckling are presented for illustration.

Multimode bifurcations of elastic equilibria were investigated on the basis of a vari-
ational (energetic) principle within the framework of problems of the postcritical behaviour
of elastic systems /1-3/. The fundamental achievements are obtained here under the influence
of the theory of singularities of smooth functions /4, 5/ and ideas associated with the sym-
metry condition (equivalence of equilibrium equations relative to the action of a group in
configuration space) /6~10/. It should be noted that the majority of the results assoclated
with equivalence with respect to a continuous group are obtained by reduction (factorization
by means of the group action orbits) to a single-mode bifurcation.

The oft-encountered symmetry of a parallelepiped (equivalence with respect to the action
of a group (Z)*=Z X ... X 2Z,)) results in the analysis of a function that is even in each
variable, or eguivalently, in the analysis of a function inacone R®={re R"|z;>0} /3, 10,
11/. Up to now, bimodal bifurcations (with the symmetry of a rectangle) reducible to an
analysis of functions of the form /5, 12/ aux?® 4 agzs® + 2,4 + az®z® + 7,4, 4 have been investi-
gated practically completely. In the case of n modes (rn > 383), it has been established for
bifurcations reducible to the analysis of functions of the form (a,y)+(Hy,»)+ ..., y= (22 ...
27T (under the condition of degeneracy of the principal minors of H) that the number of orbits

*rrikl.Matem.Mekhan.,52,6,997-1006,1988
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of small solutions (taking account of multiplicity and complex solutions) is 2% In this
situation a study of all the allcwable types, of Morse indices, and asymptotic forms of
bifurcating solutions as a function of the kind of matrix ¥ is of practical interest. Problems
that are traditional in formulations for the general theory of singularities of smooth func-
tions are solved in /9-11/ for functions with group invariance.

1. Formulation of the problem and fundamental results. Let E and F be real
Banach spaces, and suppose £ is continuously embedded in F. The smooth Fedholm /3, 6/ mapping
of £ from E into F is called potential if f == gradg V. where His a certain Hilbert space in
which F and F are embedded compactly and continuously, while V is a smooth functional (mapping
potential) on E. If £ is included in a smooth parametric family f (-, 8), f{z,0) =f{(z) of
smooth potential mappings with the potential V (z,8), 8§ & R!, then the equation

fz 8) =0 (1.1)
can be considered as an abstract analogue of the equilibrium eguation of a conservative elastic
system /13, 14/.

Definition 1.1. Let us say that a buckling condition at zero is satisfied for the Eq.
(1.1) for 6 =0 if f(0,8) =0, V{(-,8) takes thevalueof a strict lecal minimum at zero for
8§« 0 and zero is not the local minimum point for small positive §. If zero, in addition,
is the strict local minimum point for V(-,0), then we call the buckling at zero soft, other-
wise hard.

We assume that V (-,8) is continued smoothly to a certain Hilbert (energetic) space
Hi, ECH'CH (all the embeddings are continuous) with the condition that gradmV is

represented in the Leray-Schauder form (one plus a fully continuous mapping from H! into H!).
A new stable solution (the point at which V{-,8) takes on the minimum locally) appears for
such a functional for soft buckling (at zero) in addition to zero. After hard buckling no

other minimum point can remain in a previously fixed neighbourhood of zero. This can be seen

in the example of a perturbed singularity A, [5]: V= —z* — 82% z = R.
In addition let the eguation contain the parameters pe& R™
fz, 8,p) =0 (1.2)

and let V (z,6,p) be the potential for [ (2, 6,p) (the parameter 8 takes account of the main
load in specific equations, while the parameter p takes account of additional loads, geometric
characteristics, etc.). For f(z,8,0) let the buckling conditions at zero for § =0 and
the following conditions be satisfied:

1.1) For any &, p the functional V (-, 8,p) is invariant relative to a set of involutions
isometric in H

Jee B>H, L(EYCE, (FYCTF k=1,...,n
1.2) A set of smooth functions normalized in H (leading bifurcation modes) {e; (8, p)}ia,

(6, py= UC R* X BR™ exists for which Jx{g (8, p)) = —e; {5, p), Jx (&;(8, p)) = &;(5, p), (8f/32) (0, B, p) (¢, (5,
p=10;(8, p)e; 8, p), k=, where {o; (8, p)}jmy are smooth (spectral) functions;

1.3) The kernel of the operator (4f/9z)(0,0,0) is identical with the linear shell of the
vectors (0, 0), ..., ¢ (0,0

1.4) The rank of the matrix comprised of the columns (9a/dp,}(0, 0). . .., (8a/3p,)(0,0), (9a/88)
0,0) where a (8, p) = (2 8. p), ..., a, (6, p))T equals n;

1.5) The inequality {fa,/86)(0,0)<<0, 1 <k < n holds.

Note that a;{(0,0) = ... =a,{0,0) =0 follows from 1.3}, while the assumption about

buckling at zero results from 1.3) and 1.5} if f(0,8,0)=0.
For any z & E we set i;{(8, p) =<z, ¢ {8, p)> (here (.,.> 1is the scalar product in H).

z = Z2; (8, p)e; (8, p) + =* (6, p)

Then

Similarly
f(xv 8, P) = zfj (I, 5, b)) 7] (Gv P} -+ f’ (xy 8, P)

Let E:,p and F;,p be ort';lhogonal supplements in E and F in the metric {+, -> to the
linear shell of vectors {¢ (8, p)}i=;- It follows from 1.3) that f*(+,0,0): Eg*— Fuo* is a

local diffeomorphism. Therefore, by virtue of the theorem on implicit functions a smooth
function z* = @ (§, 8, p) is found with values in E:,p' £ = R*, for which

P (©0,0,0) =0, f* (Egje} 6, p)+DE 6, p),8p)=0
Definition 1.2. We call the function
WE 8, p)=V(EEe; 8, p) + © & 8 p), 6, p)

the key function of Eq. (1.2).
The point a & E  will be the solution of (1.2) for given 8§, p if and only if
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a = Zte (8, p) + @ (§, 6, p),where t is the critical point of the key function and ind (V (-, 8, p),
a) =ind (W (-, 8, p), E)(ind is the Morse index). Therefore, a study of the solutions of (1.2)
in a certain neighbourhecod of zero in E for small §,p reduces to an analysis of the
bifurcation of the critical points of the key function W (&, &, p).

It follows from 1.1) and 1.2) that W, 6, p) is even in each variable §; Therefore

W(Ev 6~ P\) = (T]’ 67 P)w n o= (glzv ey Enz)T

where g(n, 8, p) 1is a certain smooth function.
Let us consider the matrix H (8, p} which consists of the elements hy = g | 000 Li—o-
from which we require satisfaction of the condition

det He° #0, KT {1,..., n} {1.3)

Here Hy® 1is a submatrix consisting of the elements hy;(0,0), (I, =K x K.
we call H° = H{0,0) the governing matrix.
If V (2, 8, p) is represented in the form

V (2, 8, p) = const + V&, (&) + V8% () + o (| z |9 (1.4)

where V&"Z’p and V8, are homogeneous second- and fourth-order forms then hi; (8, py =V, 0 Wr
(0, 8, p)/ot20L%  where Wix(E, 8, p) is the Ritz approximation of the functional V{z, 8, p)
constructed by means of the system of vectors {e; (8, p)}ims-

Let the form V&“"p in the expangsion (1.4) be generated by a polylinear symmetric form
V) (v, 7, w), VB, (2) = V8, (2, 2, 7, 7). Then we obtain for hi,;
- 3VEh (e;(0,0), 2;{0,0), e, (0, 0), £, (0,0)), i 5%

R T . 1.5
’ v rﬁ(}) (e;(0,0)), i=7 (1)

FPormula (1.5) holds for not only potentials of the form (1.4). If the component 3,);;
(the cubic form) is introduced into the expansion (1.4), then representation (1.5) is conserved
under the condition

grady Vil (@) = 0, u = Zue; (0, 0) (1.6)

Theorem 1.1 {(/3/). Let the matrix H° be positive-definite. Then for sufficiently small
8,p in a sufficiently small neighbourhood O of zero in E there exist not more than 2" stable
solutions of (1.2).

Theorem 1.2. 1In the case of the positive-definiteness of H° in a certain neighbourhood
U of zero of the space of parameters §,p there is a closed subset ¢, nowhere not compact,
such that for any point (8, p’) from the fixed connectedness components of the set U\ ¢ the
number of stable solutions of (1.2) for § =48 and p=p is constant and equal to 27, res
{0,1,...,n}. For any re{0,1,..., n} there is a connectedness component in U ANEY for
which the number of stable solutions equals 27,

Theorem 1.3. Let the matrix H° be provisionally positive in a cone R."/15/ and let the
index of the gquadratic form {H’z,z) equal »n — 1. Then in a certain neighbourhocd U of zero
in the space of the parameters §,p there is a closed subset o, now here not compact, such

that for any point (8, p’) belonging to a fixed connectedness component of the set U\ o,
the number of non-zero stable solutions of {1.2} (in a sufficiently small neighbourhood O of
zero in E) is even for § =6 and p = p' and does not exceed 2n. For any re={1,2,...n}

there is a connectedness component in [\ o for which the number of stable solutions equals
2r,

The proof of the theorems will be given in Sect.2.

2. Bifurcation of provisional extremals in a simplicial cone. Investigation
of the extremals of the function W (), £ & R", that is even in each variable §; reduces to
investigating the conditional extremals in the cone R, for the functions g{z), = (B .-
AT, W) =g /3, 11, 18/.

The point a& R,® 1is called a conditional critical point (CCP) in R for the smooth
function g (x), < R", if grad g(a) 1is orthogonal to the least face of the cone R con-
taining a. We call the set supp (z) = {j | z; # 0}, the support of the point ze R" and the
number card supp (z) the order of the point. We denote the subspace {x |supp (z) K} by

R, K {1, ..., n}. Therefore ac= R,® is the CCP in R,® for g if grad g (a) | Ruppw@s OF,
equivalently, the following relationship is satisfied
supp (a) [ supp (grad g (@)) = J 2.1)
If in addition to (2.1) the following equality is satisfied
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supp (a) |J supp (grad g (¢)) = {1, .. .. n} (2.2)

then we call a the embedded CCP. If the condition of non-degeneracy of the Hessian in a is
satisfied for the constraints gg =g l“'fc’ K = gupp (a), together with (2.1) and (2.2), then we
call a a regular point. The CCP that is not regular is called degenerate. A number equal to
the usual Morse index of the constraint gg, K = supp (¢) added to the number of negative numbers
in the set {(dg/dz;) (a)}ix is called the Morse index of the regular critical point a.

we define the bifurcation set /4, 5/ o (g, 0), 0 T R® for the arbitrary smooth evolute
gz, M), g(z,0) = g(@), L& R™ as the set A for which g(-,A) has a degenerate CCP in O [} Rl
Let L {1,...,n}, KL= k1 (g 0) be a subset of values of A for which g(-,A) has a
regular critical point a0 ) R} with support K and for which

(0gldz)) (a, M) << 0, (9gidz;) (e, M) >0, le=L, jEKJL
1t follows from the definition of wg;r that dog . o (g, 0).

For a function g under the condition (1.3) and the rank of the matrix {8°%g/dMdz) (0, 0) equal
to the number n, the following relationship is satisfied

a(g, O)== | dog,(g,0)
K, L

Here and henceforth O is a sufficiently small neighbourhood of zero in R".
Moreover, a neighbourhood U of zero is in R™ such that
UNo(g0)= | (UN ox;&0)

K, j

where 0Og,;(g, 0) is a set X for which g{-,A) has a CCP a with support K and
je{t, .. . n} (K  supp (grad g (a, 1))

For sufficiently small O and U the existence of not more than one CCP in O (] Ri with
the given support follows from (1.3). Furthermore, it is assumed everywhere that

grad g (0,0) =0 {2.3)

Lemma 2.1. Let rank (0%/8z0A)(0,0) = n and let conditions (1.3) and (2.3) be satisfied.
Then for any neighbourhood O of zero in R™ there is a neighbourhood U of zero in R™ such that
for every curve A(t),2& [0,1], in U intersecting the component og,; for ¢ =¢, and not
intersecting any of the remaining components ¢ for no matter what t, there is a single curve
z{) in O (1 R! that consits of a CCP for g(-,A(t)} (for appropriate t) with the constant
support K.

By virtue of (1.3) the proof results from the theorem on implicit functions.

We note that the intersection of the components 0g,; of the curve A(f) denotes
satisfaction of the equality (dg/8xz)) (z {¢), A (t,))= 0, where =z ({fJ is a curve corresponding to
A () according to Lemma 2.1.

Let

)= (o, h0)

Definition 2.1. Let us say that a smooth function A (f} intersects Og.; positively if
v{t,) > 0. Otherwise we call the intersection negative.

Lemma 2.2. Let rank (8%g/0zd) (0,0) = n and conditions (1.3) and {2.3) be satisfied. Let
the neighbourhoods O and U satisfy the conclusion of the Lemma 2.1 and the smooth curve A (¢)
intersect Og;y; positively (negatively) for ¢ =1, and not intersect the remaining components
of g for any t. Then the Morse index of the CCP =z () of the function g (-, A (1)), supp (z (8)) =
K decreases (increases) by one after the intersection. -

Proof., After the positive (negative) intersection, we have <{3g/dz){z($),A () >0 (<0) for
t>14. Therefore, the number of negative derivatives decreases (increases) by one. Since the
signature of the Hess matrxix in =z() is constant in O for the constraint gx (-2, then we
hence obtain the statement of the lemma.

Lemma 2.3. The CCP branch in R," with support K |jj is either generated from z (I}
or vanishes at this point under the conditions of Lemma 2.2 for the passage of t through ¢, .
Generation (disappearance) occurs for a positive (negative) intersection and the condition
det Hx" det Hxy;<<0 or for a negative (positive) intersection and the condition det Hx® det
H;(Uj>0. The Morse index of the bifurcating point with support K Jj agrees with the Morse
index of the point of support K considered prior to the generation ({(after the disappearance)
of the bifurcating branch.
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Proof, A critical point with support K |Jj is defined by the following system of equations:

(9g/9x ) (1, A () = aq =0, k= K}, qeKUj (2.4)
It follows from the conditions of the lemma that this system is solvable for ¢-=¢t,. and
therefore, even for t=1t,. Let y(2 be a solution of system (2.4) y () - «(t4), where (1)
is a CCP branch with support X. Let I' denote the Hess matrix of the function g(-, A {1 at
the point z(t) and Tg,, its submatrix consisting of v, ,, k= Kk, leL. For t=1t we obtain

from the rule for differentiation of implicit functions

dz .
K dh dr . dh ,
Uik—gr + Bz = Tex =gy +Bx—g =0 (2.5)
Wy dn Ay s
o 7EUI o, dh K Ui dh
Uswui—ar ~ + By =0, Trxyy—gr—+ Bk =0 26)

o92g

a3
Bi - ﬁlﬁzj » By :( ah grad g)[{

(zx is a vector comprised of the components uy, ke K of the vector .
We obtain from (2.5) and (2.6)

dy.
Ty = Dyl kTa) - +7=0

The factor before the derivative in this last expression equals det Ty g5/ det Ty g
Therefore sgn dy i/t — —s . °
ki gn y sgn (det #,° det HKU-)
The assertion of the lemma follows from this last equality.
We will now prove Theorem 1.l and 1.2. 1If the matrix H° is positive-definite, then it
follows from Lemma 2.3 that g (-, A), A = (§, p) has a unique zero-index CCP in O. If the curve
A8, t =10, 1] connects a point of the domain 0. with the point of the domain ©k;g, then

in conformity with Lemma 2.3 a stable point with support K bifurcates during passage into
wg,». The set Wwg;g 1s given by the relationships

0g/oxy = x; =0, z, >0, 0glox; >0, k< K; jE£EK

and is obviously not empty when conditions (1.3) and (2.3) are satisfied. _

If WEMN=g(z, A, 2= (82 ..., &%), A = (§, p), then the critical point E& R, E; = Va
of the function W (.,A) 1is in one-to-one correspondence (with the Morse index conserved)
with each CCP = in R," of the function g (-,A). By changing the signs in front of the com-
ponents §; we obtain other (adjacent) critical points of the function W (-, A) with the same
Morse index. There will be 2" of these points, where r = card supp (z).

Under the conditions of Theorem 1.3 the CCP of zero index in O is of order not higher
than the first. The function g(-,v?) has just r stable first order CCP with supports K =
{ky, .. ..k}, in O for small t if v is the solution of the eguation (8%/0zd}A) (0,0} v = p, p =
(prs - - -» Pu)T.  where pj = — Vhiu‘ for j&= K and p;-- |rm for £ K.

Remark. 1t follows from the proof of Lemma 2.3 that the component «x(A) of the critical
point =z (A with support K has the following asymptotic representation:
zg (B) = —(H ") b (M 4o ()] (2.7)
b (A) = grad n g (0, 4)

The relationships
17 g .
7, (M) >0, %(z(x),x)<o, gf—.(z(k),k)>0
7
ke Kk, lel, jegK{JL

are the necessary and sufficient conditions for inclusion of the point A in the domain @g,..

3. Remarks about initial imperfections and cascade bifurcations. In a broad
sense taking account of initial imperfections means studying possible changes in the nature of
the bifurcation during passage from (1.1) to the perturbed equation f'(z,8)=0 with the
potential V' (z,98)

&V (x,8) — &V, || <e @8=O0xU,j<m (3.1)

Here d’ is the j-th order differential, and m is a given integer.

Let us say that Eg. (1.1l) allows an r-step cascade bifurcation (r is a positive integer)
if for arbitrarily small neighbourhoods O and U of the zeros in E and R! there exists an
arbitrarily close perturbed equation f'(z,8) =0 in the sense of (3.1) for which a curve
(@), 8 (&), t=10,1] is in O x U such that 1) f (z(t), 8 (t)) = 0,2) the projection (x, 8) —¥5
contracted on the graph of this curve has just 2r turning points (points of %ocal homeomorphism) ,
3) the Morse index of the potential V' (., 8 (f)) equals zero or one at the point z (f) if
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{z (1), 6(2)) 1is not a turning point. Single-stage cascade bifurcations are generated by one-
dimensional assemblies /5/.

It is easy to note that an r-stage cascade bifurcation is generated by singular points
of the type A,.; /4, 5/ that appear in specific problems as adjoining to the simplest multi-

dimensional singular points {on degenerating into many modes). In this connection the follow-
ing is of interest

Theorem 3.1. If conditions 1.1)-1.3) are satisfied for V(g,8), and the governing
matrix H® is positive definite, then a functional V{z, 8 is as close to V' (z,8) as we please
(in the sense of (3.1) with any m), for which the key function has the form

2r

3 a@F +o(|EP) te Ry =" 3.2)
o (D= . .=y (0)=0, o, (H>0

The Morse index of any regular critical point z fairly close to zero for V' (-,8) agrees
for sufficiently small 8 with the Morse index corresponding to its critical point § for
the function (3.2).

Proof. Let W (E, 8} be the key function for V(z,8), Ee R" 1t follows from the con-
ditions of the theorem that W (§, 0) is represented in the form (H°r,a) +o (|2 *), == (§* ...,
£.2)7, where H® is a positive-definite matrix. We consider the function

h (%, 5) = g (gl'a’ Ezz -+ s&n .y gnz -+ Egn—l)

and make the change of variables

Ny-1 = Sgk-l -+ §k27 k = 21 PEREE (M gn == MNn
The function /4 (-, e} in the variable 1y is semiquasihomogeneous with weights
(oo ey Vaga™} W] (g = 2770:
R D . L T s L (3.3)
i>2, 22
s -2(g,-1)
28hy, T M O (e ey 1)
Here & (¥, - . - Wn)] 15 & combination of power monomials above the Newton polyhedron /4/
of the function h(-,e} i.e., faces containing the exponents of the monomials Mds - - s Noers
)
ﬂnn-

The non-degeneracy of the principal quasihomogeneous part results from the positive-defi-
niteness of H’. And since the corank of the Hess matrix at the zero of the function (3.3)
equals one for & == {0, this function has a singular point of the type Ay k= 4g, —1 =2"" — 1
at the zero. Hence, the assertion about the form (3.2) follows. The agreement of the Morse
indices at corresponding critical points for ¥ (-,8) and (3.2) follows from the positive-
definiteness of the principal quasihomogeneous part of the function &k (-, ).

Definition 3.1. A semihomogeneous fourth-order polynomial of n variables of the form /4/
n k
WE=Z 5+ Da, .pfivo. . 08" (3.4)
=

under the condition that the quartic part’of (3.4) is finite-to-one (3" multiple) is called
an assembly of dimensionality n. The summation in the second term in (3.4) is over Ky, ..., kn
for O k<2, Zk; > 4.

The introduction of the form (3.4) is motivated by the theory of normal forms of semi~-
quasihomogeneous functions /4/. A set of polynomials of the form (3.4) forms an affine sub-
manifold ¥ in the space of polynomials for coordinates whose points are given by the set of
coefficients & = {a, ..., ). The dimensionality of M is 3" —n(n + 1) {(n + 2)/6 — n(n + 1).2 — 1.

Let k {(a) denote the greatest of the multiplicities of singularities of the type Ay
adjacent to (3.4) for a given set of coefficients a.

Theorem 3.2. An open, everywhere compact, subset exists in M for any point a for which
the following estimate holds

ke <nn+12+nn-+1)(n+ 2)6
See the proof in /17, 18/.

4, Examples of elastic systems with parallelepiped symmetry. A system of
Euler bars. The simplest example of an elastic system with parallelepiped symmetry is a set
of identical and identically compressed plane (Eulerian /19, 20/) bars /5/. The governing



784

matrix here is proportional to unity (soft buckling) and therefore, the coexistence of stable
modes of equilibrium of any previously assigned but general for all branching modes of the
type is allowed in the postcritical phase,

Karman equation for an elastic rectangular plate. Numerical results are presented in
/12/ on bimodal bifurcations of solutions of the Karman equation for an axially compressed
rectangular plate under different boundary conditions. It follows from this that the matrix
H° is conditionally positive in R,? and det #{° <0, In conformity with Theorem 1.3, this means
that here the coexistence of stable unimodal (first-order) solutions is allowed in the post-
critical stage while the existence of stable bimodal (second-order) solutions is not allowed.

A Kirchhoff rod with elastic reinforcement. We examine a rectilinear axially compressed
thin elastic rod in space /19-21/, framed stiffly at the ends and reinforced by an elastic
force with the potential

1

’%*<S (2, 83 (s)) d3>2 s re==(0,1,07
o

g3 (5) 1is the direction tangent to the middle line of the rod at the point of the parameter of
lengths s, 0 <1, and p is the parameter of the elasticity force of the reinforcement
(reacting to the deviation of the rod end from the axis r3 in the direction ry). It is assumed
that p > 4n®. Let £ () and g, () be directions along the principal axes of inertia of a
normal section at the point of the middle line of parameter s, and let n=1{1,0 0T, ;= (0,0, )7
The Kirchhoff equation /19-21/ of the rod equilibrium configuration with the above-
mentioned elastic reinforcement is written in the following form
—Adn/ds + [A%, ®] + Alrg, g7'rg) + p<rg, g7lrgd [rgg7lrg) = 0 (4.1)
1
@0 ={ (@@ b ds, 4 =diag(dy, A 4
0

Here A is the parameter of the axial compression force, A is the elasticity tensor in
the transverse section for which the E.L. Nikolai condition is satisfied

2 A1As
A<TIV A4t 4

v is Poisson's ratio 0< v <Y, #(s$) is the angular velocity of section motion as a function
of s written in coordinates in the triplet g (s), g,(s), 83(5); 8(5) is a matrix consisting of co-
ordinates of the vectors g (s), g2(8), g5 () in the basis triplet g (0), g2 (0), g5 (0); (A%, %] is the
vector product.
The boundary condition
g0y =¢gM)y=1 (4.2)
corresponds to rigid clamping at the ends.
The potential of (4.1) under condition (4.2) is
Yyt An, %> + A <ry, £7lrg> & Yah <15, 722 (4.3)

If » 1is identified with the matrix

0 —x% %
X= ¥z 0 —mn
— % A 0l

then the equality X (s)= g!(s)(dg/ds)(s) is true for the matrix image X (s) of the vector % (8)

/22/.
Let the functional V (g, A, u,4) be obtained from (4.3) by the substitution

1
g = exp (pyrs) exp (qyry) exp (pyry), exp (¥) = T X*

We assume E to be the space of functions o(s), s<[0,1] of the class ¢? with values in

R® that satisfy the condition
o) =9(1)=0 F=C(0,1], R, H=Ly (0, 1], R%

(the space of continuous and the space of square summable functions in [0,1) with values in
R%). The functional V is invariant under the involutions J,,J, where J1(®) = —@ury + Pgra — PsTss
J3 (@) = @11y — Para — @373 ‘ '

For the localization of the parameters A= 4n*+ 8, A, =1, A,=4-+p by the bifurcation
modes we have ~ _

e, =VY2(sin2ns)r;, eg=1V2(sinns)r,
Here o (8, p) = =5, 2, (8,p) = —b+p
Condition (1.6) is not satisfied here. Elementary calculations (omitted here because
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of their length) show that k;2<:~»V$;J§d. Therefore, the governing matrix in this example is

not conditionally-positive in R/
The constraint p>>4n? formulated earlier "locks in" the mode
e5 () = d (){cos 8 (p)(s — Yy) — cos'/y B (u) ny

Here d{w is a normalizing factor while 8(w if found from the equation 6% = p{1 — 267 12"/, 8).
The situation of trimodal bifurcation with parallelepiped symmetry occurs for the local-
ization p == 4n?.

The author is grateful to the reviewer for useful remarks.
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