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MULTIMODE BIFURCATIONS OF ELASTIC EQUILIBRIA* 

YU.1. SAPRONOV 

Conservative elastic systems with parallelepiped symmetry are considered, for which a 

study of the postcritical equilibria reduces (by the Lyapunov-Schmidt method) to the analysis 

of extremals of functions of the form 

W(II, ..,.Tn,h) = TUj(h)Zj2 + Zhi,j+l*zja + . 

where J~=(hi,J is a symmetric matrix with non-degenerate principle (diagonal) minors. A 

relationship is written down for which the matrix H is determined by Ritz approximations of 

the total energy functional constructed by means of the fundamental bifurcation modes. In the 
case of soft buckling and for indH= 0 or n- l(ind is the number of negative eigenvalues 

taking multiplicity into account) all the allowable types and quantities of bifurcating stable 
equilibriums are listed. It is shown that after soft buckling with breaking of symmetry, 

cagcade bifurcations are possible (cascade bifurcations simulate the postcritical series of 

snappings accompanied by a drop in the load /l, 2/). Two known examples of soft buckling and 

one new example of hard buckling are presented for illustration. 

Multimode bifurcations of elastic equilibria were investigated on the basis of a vari- 

ational (energetic) principle within the framework of problems of the postcritical behaviour 

of elastic systems /l-3/. The fundamental achievements are obtained here under the influence 

of the theory of singularities of smooth functions /4, 5/ and ideas associated with the sym- 

metry condition (equivalence of equilibrium equations relative to the action of a group in 

configuration space) /6-lo/. It should be noted that the majority of the results associated 

with equivalence with respect to a continuous group are obtained by reduction (factorization 

by means of the group action orbits) to a single-mode bifurcation. 

The oft-encountered symmetry of a parallelepiped (equivalence with respect to the action 

of a group (Z,>“=&Z, . . . x 2,)) results in the analysis of a function that is even in each 

variable, or equivalently, in the analysis of a function inacone R+"=(zER"~z~>Ol /3, 10, 

ll/. Up to now, bimodal bifurcations (with the symmetry of a rectangle) reducible to an 

analysis of functions of the form /5, 12/ q,t,* + alzIa + I~* + DS~*I~~ + s,', aa # 4 have been investi- 

gated practically completely. In the case of n modes (n > 31, it has been established for 

bifurcations reducible to the analysis of functions of the form (a,~)+(Hy,y)f . . . . y= (zla,..., 
z,,‘)~ (under the condition of degeneracy of the principal minors of H) that the number of orbits 

*Prikl.Matem.Mekhan.,52,6,997-1006,1988 
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of small solutions (taking account of multiplicity and complex solutions) is zn. In this 

situation a study of all the allowable types, of Morse indices, and asymptotic forms of 
bifurcating solutions as a function of the kind of matrix Ii is of practical interest. Problems 
that are traditional in formulations for the general theory of singularities of smooth fUnC- 
tions are solved in /g-11/ for functions with group invariance. 

2. Formulation of the problem and fundamental results. Let E and F be real 
Banach spaces, and suppose E is continuously embedded in F. The smooth Fedholm /3, 61mappinq 
of f from E into F is called potential if f = grads V. where His a certain Hilbert space in 
which E and F are embedded compactly and continuously, while V is a smooth functional (mapping 
potential) on E. If f is included in a smooth parametric family f (*, 61, f (r, 0) = f (4 of 
smooth potential mappings with the potential V(I,&), 6 e R', then the equation 

f (5, 6) = 0 (I.11 

can be considered as an abstract analogue of the equilibrium equation of a conservative elastic 
system /13, 14/. 

Definition 1.2. Let us say that a buckling condition at zero is satisfied for the Eq. 
(1.1) for 6 = 0 if f(o,&)~O, V (*,6) takes thevalueof a strict local minimum at zero for 
6<O and zero is notthelocal minimum point for small positive 6. If zero, in addition, 
is the strict local minimum point for V(+,O), then we call the buckling at zero soft, other- 
wise hard. 

we assume that V(-,6) is continued smoothly to a certain Hilbert (energetic) space 
H', EC Hit H (all the embeddings are continuous) with the condition that gradn,V is 

represented in the Leray-Schauder form (ane plus a fully continuous mapping from H' into H'). 
A new stable solution (the point at which V(.,S) takes on the minimum locally) appears for 
such a functional for soft buckling (at zero) in addition to zero. After hard buckling no 
other minimum point can remain in a previously fixed neighbourhood of zero. This can be seen 
in the example of a perturbed singularity A_, [51: V = -21 - 6x", 5 E R'. 

In addition let the equation contain the parameters p or R? 

f (2, S, P) = 0 W) 
and let V(s,6,p) be the potential for f(2,6,p) (the parameter 6 takes account of the main 
load in specific equations, while the parameter p takes account of additional loads, geometric 
characteristics, etc.). For f(r,~?,O) let the buckling conditions at zero for s=o and 
the following conditions be satisfied: 

1.1) For any S,p the functional V(-, S,p) is invariant relative to a set of involutions 
isometric in H 

Jrr: H-+H, JP(E)~E, JR(F) c F, k = 1 , . . ., 12 

1.2) A set of smooth functions normalized in H (leading bifurcation modes) {e,(&p)fjn_i, 

(&p)~ UcR'x R"' exists for which Jk(ek(6,p))= 
p))=-af (6, p)ej (6, P), k #i, where {a) (6, p)}j",l 

-et (6, Pf, J, (ej(6, p)) = ejts, P), (WW(O, 6, P) (e,(S, 
are smooth (spectral) functions; 

1.3) The kernel of the operator (L3fla.r) (O,O,O) is identical with the linear shell of the 
vectors e,(O, 0), . . ., en {O, 0); 

(03 0) 
1.4) The rank of the matrix comprised of the columns (~~~~~~)(O,O~. . _ ., (~~/~~~)(O,O), (&‘Xj) 

where a (6, p) = (aI (6, p), . . ., a,, (6, p))T equals n; 
1.5) The inequality (&x,/~6)(0,0)~<0,‘~ <k < n holds. 
Note that a, (0,O) = . . . = a, (0,O) = 0 follows from 1.31, while the assumption about 

buckling at zero results from 1.3) and 1.5) if f (0, S,0)~0. 
For any 5 E E we set q&p) = (s, e,(6, p)> (here (., .> is the scalar product in 

Then 

Similarly 
z = Xzj (6, p)e, (6, P) f r* (6, P) 

f (z, 6, P) = zfj (z, 6, p)ei (8, P) -+- f*(.z, 6, p) 

W 

Let .G.P and Fi;rp be orthogonal supplements in E and F in the metric 
linear shell of vectors {e,(6,p)}&,. 

<., .> to the 
It follows from 1.3) that f* (a ,O,O): Ea.,,* + F,,,e* is a 

local diffeomorphism. Therefore, by virtue of the theorem on implicit functions a smooth 
function 5+ = @(f,s,p) is found with values in Gspt EERn, for which 

Q, (0, 0, 0) = 0, f* (Z&j (4 p) + CD (f, 6, P), 6 PI = 0 

Definition 1.2. We call the function 

w(El 6% p) = V(%fe~ (6,~) + CD (!, 6,p), 6,~) 

the key function of Eq.(1.2). 
The point aEE will be the solution of (1.2) for given &,p if and only if 
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a = x&e, (6, p) f @ (5, 6, p),where 5 is the critical point of the key function and ind(V(.,S,p), 
a) =ind (W(., 6, p), E)(ind is the Morse index). Therefore, a study of the solutions of (1.2) 

of the 

srefore 

in a certain neighbourhood of zero in E for small d,p reduces to an analysis 
bifurcation of the critical points of the key function w (E, 6, P). 

It follows from 1.1) and 1.2) that W(&s,p) 1s even in each variable Ej. T: nc 

W(& 6, p) = s(q, 6, p), 11 == ($,,", . ., &,2)= 

where 4 (11, 6, P) is a certain smooth function. 
Let us consider the matrix H (6, PI which consists of the elements /Qj = d'g I 

from which we require satisfaction ofthecondition 

det HK" f 0, KC (1, . . ., ~2) 

Here He0 is a submatrix consisting of the elements h;, (0, O), (i, j)E K x K. 
We call H" = H(O,O) the governing matrix. 
If V(X,~,JJ) is represented in the form 

V (m, 6, p) = const+ Vba.'= (5) + ti', (5) + a (11 x 114) (1.4) 

where I'&';', and 9' are homogeneous second- and fourth-order forms then h,j (6, p) = '!,a-'HJe 
(03 6, p)!aEiZafj27 wh:r: ?%'a (E, a,@ is the Ritz approximation of the functional Y (x, 6, P) 
constructed by means of the system of vectors {ej (63 P)lL* 

Let the form vb",b intheexpansion (1.4) be generated by a polylinear symmetric form 

@:, (x, y, Z, w), Vb".b (5) = y61', (x, 2, Z, s). Then we obtain for hi,j 

hf 

i 

3VJ$ (ej (0, O), ej (O, O), et ((1, O), ei (0, O)), i + i = 
ir > 

V$ (ej (0, 0)), I = j 
(t.5) 

Formula (1.5) holds for not only potentials of the form (1.4). If the component fl', 

(the cubic form) is introduced into the expansion (1.4), then representation (1.5) is conserved 
under the condition 

grada Vt! (u) = 0, IL = Zujej (0, 0) (*fJ) 

Theorem 1.1 (/3/J. Let the matrix EI" be positive-definite. Then for sufficiently small 

6, P in a sufficiently small neighbourhood 0 of zero in E there exist not more than 2" stable 
solutions of (1.2). 

Theorem 1.2. In the case of the positive-definiteness of H" in a certain neighbourhood 
U of zero of the space of parameters 6,~ there is a closed subset e, nowhere not compact, 
such that for any point (6',p') from the fixed connectedness components of the set U\,o the 
number of stable solutions of (1.2) for 6 = 8' and p = p' is constant and equal to "',rc 
{O,f,...,n}. For any FE {O,f,..., n) there is a connectedness component in u\c for 
which the number of stable solutions equals 2'. 

Theorem 1.3. Let the matrix H' be provisionally positive in a cone K+"/15/ and let the 
index of the quadratic form (H".z,z) equal n- 1. Then in a certain neighbourhood U of zero 
in the space of the parameters 6,~ there is a closed subset e, now here not compact, such 
that for any point (6',p') belonging to a fixed connectedness component of the set 1' \ CT, 
the number of non-zero stable solutions of (1.2; (in a sufficiently small neighbourhood 0 of 
zero in E) is even for 6 = 6' and p = p' and does not exceed 2%. For any rE (1, 2, . . . a} 
there is a connectedness component in u\c for which the number of stable solutions equals 
2r. 

The proof of the theorems will be given in Sect.2. 

2. Bifurcation of provisional extremals in a simplicial cone. Investigation 
of the extremals of the function W(g), 6~ R”, that is even in each variable &J reduces to 
investigating the conditional extremals in the cone R+*' for the functions g (5), 2 = (5?, . . .3 
S,‘)T, W(E) = g (4 /3, 11, lb/. 

The point lzE R= is called a conditional critical point (CCP) in R+* for the smooth 
function g(s),sE Rn, if grad g (a) is orthogonal to the least face of the cone Kn con- 

taining a. We call the set supp(s)= (j /x,#O), the support of the point ZE R" and the 
number card supp(s) the order of the point. We denote the subspace {x 1 supp(s)c K) 9 

Rx”, K c (1, . . .* 4. Therefore aEEl; is the CCP in R+* for g if grad g (a) J_ ~~~~~=~, or, 

equivalently, the following relationship is satisfied 

SUPP (a) fl SUPP (grad g (4) = 0 

If in addition to (2.1) the following equality is satisfied 
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supp (a) IJ supp (grad g(a)) = (1, . . ., a) cw 

then we call a the embedded CCP. If the condition of non-degeneracy of the Hessian in a is 

satisfied for the constraints gK = g I,&, K = supp(a), together with (2.1) and (2.21, then we 

call a a regular point. The CCP that is not regular is called degenerate. A number equal to 
the usual Morse index of the constraint gx, K = supp(u) added to the number of negative numbers 
in the set {(~g/ds,)(~)}~=~ is called the Morse index of the regular critical point a. 

We define the bifurcation set /4, 51 o(g, 0), 0 C ff" for the arbitrary smooth evolute 

g (z, h), g(r, 0) = g(z), h. E R"' as the set h for which g(.,h) has a degenerate CCP in 0 8 RP. 

Let L C (1, . . .( n}, Kn L =,a; ~~:~,(g,o) be a subset of values of h for which g(.,h) has a 

regular critical point se0 0 R: with support K and for which 

(%/azl) (a, A) < 0, (agidxj)(e, A)> 0, 1 E L, is K U L 

It follows from the definition of OX;L that 809;~ c: a (g, 0). 

For a function g under the condition (1.3) and the rank of the matrix (@'g,'%Xr) (0,O) equal 
to the number n, the following 

Here and henceforth 0 is 
Moreover, a neighbourhood 

relationship is satisfied 

(J(g, W=Ku~~W;,(g,o) 
* 

a sufficiently small neighbourhood of zero in R". 
u of zero is in R" such that 

u n u(g9°)eKUj(U fl aK;j(g3@) 

where cw (g* a is a set h for which g(+,L) has a C&P a with support K and 

j E {I, * * .7 4 \ W U SUPP bad g@. N)) 

For sufficiently small 0 and U the existence of not more than one CCP in 0 fl R: with 
the given support follows from (1.3). Furthermore, it is assumed everywhere that 

grad g (0, 0) = 0 (2.3) 

LeJNm 2.1. Let rank (~2g/8xi%)(0, 0) = n and let conditions (1.3) and (2.3) be satisfied. 
Then for any neighbourhood 0 of zero in II" thexe is a neighbourhood U of zero in Rmsuch that 
for every curve k(t), t E [O, I], in U intersecting the component UK;J for t = t, and not 
intersecting any of the remaining components U for no matter what t, there is a single curve 
5 (t) in 0 (1 K that consits of a CCP for g(-,h ft)) (for appropriate t) with the constant 
support K. 

By virtue of (1.3) the proof results from the theorem 
We note that the intersection of the components 

satisfaction of the equality f&?/&j) (z (tr), h (tr))= 0, whzfe' 

h (0 according to Lemma 2.1. 
Let 

on implicit functions. 
of the curve x(t) denotes 
r(t) is a curve corresponding to 

Definition 2.1. Let us say that a smooth function k(t) intersects ax:1 positively if 

Y(G) > 0. Otherwise we call the intersection negative. 

Lemma 2.2. Let rank (~2g/~x~~)(0, 0) = n and conditions (1.3) and (2.3) be satisfied. Let 
the neighbourhoods 0 and V satisfy the conclusion of the Lemma 2.1 and the smooth curve h 0) 
intersect ff~,j positively (negatively) for t = t, and not intersect the remaining components 
of (I for any t. Then the Morse index of the CCP z(t) of the function g(.,h(t)),supp(z(t)) = 
K decreases (increases) by one after the intersection. 

Prdof. After the positive (negative) intersection, we have (ag/&j)(~(t), 5 ft)) > 0 (<O) for 
f>l,. Therefore, the number of negative derivatives decreases (increases) by one. Since the 
signature of the Hess matrix in z(l) is constant in 0 for the constraint gK(-, I(t)) , then we 
hence obtainthe statement of the lemma. 

Lema 2.3. The CCP branch in R," with support K L; j is either generated from 5 (Q 
or vanishes at this point under the conditions of Lemma 2.2 for the passage of t through t,. 
Generation (disappearance) occurs for a positive (negative) intersection and the condition 
detHx"det&ur<O or for a negative (positive) intersection and the condition 
H&j> 0. The Morse index of the bifurcating point with support K U j 

det HK' det 
agrees with the Morse 

index of the point of support K considered prior to the generation (after the disappearance) 
of the bifurcating branch. 
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Proof. A critical point with support KU j is defined by the following systemofequations: 

(&+3sk) (2, A(f)) = z4 = 0, k=KUj, q=zVJj (2.4) 

It follows from the conditions of the lemma that this system is solvable for 1 = 1,. and 
therefore, even for t#tt,. Let Y (t) be a solution of system (2.4) Y(tJ s(f,~. where I (t) 
is a CCP branch with support K. Let 1' denote the Iless matrix of the function fi (., i(I,li at 
the point r(t,) and Pri:L its submatrix consisting of vh-,[, k E K, 1~ L. For t=t, we obtain 
from the rule for differentiation of implicit functions 

(2.5) 

cxK is a vector comprised of the components Q, k cz K of the vector .rJ. 
We obtain from (2.5) and (2.6) 

(rj;i-rj;Kr;C!,KrK;l) $+r=o 

The factor before the derivative in this last expression equals dpt 1‘x ,].,‘,,+ det rg. K. I . 
Therefore 

SW dYj/dt = -sgn y S~II (det IfKo det H;~]) 

The assertion ofthelemma follows from this last equality. 

We will now prove Theorem 1.1 and 1.2. If the matrix H'is positive-definite, then it 

follows from Lemma 2.3 that g(.,h), ?, = (6,~) has a unique zero-index CCP in 0. If the curve 

h (t). t !z IO, II connects a point of the domain 02;0 with the point ofthedomain O)K;Qlr then 

in conformity with Lemma 2.3 a stable point with support K bifurcates during passage into 

WK:$. The Set OK;@ is given by the relationships 

agidxk = xj = 0, xk > 0, aglaxjj 0, k E K; j -s K 

and is obviously not empty when conditions (1.3) and (2.3) are satisfied. 

If w (5, h) = g (z, h), 5 = (El*, . . ., En”), h = (6, p), then the critical point E E R+", !,j 1'6 

of the function W(. , h) is in one-to-one correspondence (with the Morse index conserved) 

with each CCP I in R,” of the function R (.> h). By changing the signs in front of the com- 

ponents Ej we obtain other (adjacent) critical points of the function rv(., 12) with the same 

Morse index. There will be 2' of these points, where r = card supp (x). 
Under the conditions of Theorem 1.3 the CCP of zero index in 0 is of order not higher 

than the first. The function g(.,v t) has just r stable first order CCP with supports K _ 

(k,, . kr), in 0 for small t if V is the solution of the equation 

where pj ; - J'G 

(d2g:axah)(o, 0)Y .: p, [J -- 
(J),, ., P”lT7 for j E K and pi : j’Gj for j $ K. 

Remarl:. It follows from the proof of Lemma 2.3 that the component z,(h) of the critical 

point z (E.) with support K has the following asymptotic representation: 

SK (k) = -_(!fh-")-' b, (h) + 0 ( 1 k 1 ) (2.i) 
b (h) = gradR, g (0. r;) 

The relationships 

31((h)>0, + (I (X).X) <o, + (2 (h),h) >o 

k E K, IEL, jc$cKiJL 

are the necessary and sufficient conditions for inclusion of the point h in the domain eK:L* 

3. Remarks about initial imperfections and cascade bifurcations. In a broad 
sense taking account of initial imperfections means studying possible changes in the nature of 

the bifurcation during passage from (1.1) to the perturbed equation f'(x,b)=O with the 

potential V’(S, 6) 

(1 djV’ (5, 6) - d’V (z, 6) (( < E, (x, 6) E 0 x U, j -< m (3.1) 

Here dj is the j-th order differential, and m is a given integer. 

Let us say that Eq. (1.1) allows an r-step cascade bifurcation (I. is a positive integer) 

if for arbitrarily small neighbourhoods 0 and U of the zeros in E and R1 there exists an 

arbitrarily close perturbed equation f'(x,6) = 0 in the sense of (3.1) for which a curve 

(x (t), 6 (t)),, t E 10, 11 is in 0 x U such that 1) f' (x (t), 6 (t)) = 0,3_) the projection (x, 6) - 6 

contracted on the graph of this curve has just 2r turning points (points of local homeomorphism), 

3) the Morse index of the potential V'(., 6 (1)) equals zero or one at the point 5 (t) if 
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(5 w fJ (G) is not a turning point. Single-stage cascade bifurcations are generated by one- 
dimensional assemblies /5/. 

It is easy to note that an r-stage cascade bifurcation is generated by singular points 
of the type A2r+l /4, 5/ that appear in specific problems as adjoining to the simplest multi- 

dimensional singular points (on degenerating into many modes). In this connection the follow- 
ing is of interest 

Theorem 3.1. If conditions l.L)-1.3) are satisfied for v(g,6), and the governing 
matrix H" is positive definite, then a functional i' (r, 5) is as close to V’(x,S) as we please 
(in the sense of (3.1) with any m), for which the key function has the form 

jil ak (6) tk + 0 ( I E Y). E E I?“, r = 2” (3.2) 

a, (0) = . . . = o.*r-I (0) = 0, a,, (0) > 0 

The Morse index of any regular critical point z fairly close to zero for I"(.,&) agrees 
for sufficiently small 6 with the Morse index corresponding to its critical point E for 
the function (3.2). 

Proof. Let W(g,6) be the key function for V(z,6), E CZ Rn. It follows from the con- 
ditions of the theorem that IV(E,O) is represented in the form (K'x, z) + o (I I le), x = (El*, . . ., 
EnY, where Ho is a positive-definite matrix. We consider the function 

h (E, E) = g (E,", ES2 f sL . . .t Sn2 -t &d 

and make the change of variables 

qkml = &_r + gX2, k = 2, . . ., n; f, = qln 

The function h(..e) in the variable qj is semiquasihomogeneous with weights 

Here o (?b, . . ., %) is a combination of power monomials above the Newton polyhedron /4/ 
of the function h(.,e) i.e., faces containing the exponents of the monomials %2, . . ., qa-1, 

$9, qn . 

The non-degeneracy of the principal quasihomogeneous part results from the positive-defi- 
niteness of H". And since the corank of the Hess matrix at the zero of the function (3.3) 
equals one for E #O, this function has a singular point of the type Ax, k = 44,, - 1 = 2"" - 1 
at the zero. Hence, the assertion about the form (3.2) follows. The agreement of the Morse 
indices at corresponding critical points for V’(-,6) and (3.2) follows from the positive- 
definiteness of the principal quasihomogeneous part of the function h(.,~). 

Definition 3.1. A semihomogeneous fourth-order polynomial of n variables of the form /4/ 

w (8 = i Ei’ + x Uk,* ._.( ,&h’, 0 . . . 0 & 
j=l 

(3.4) 

under the condition that the quartic part'of (3.4) is finite-to-one (sn multiple) is called 
an assembly of dimensionality n. The summation in the second term in (3.4) is over k,,...,k, 
for 0 << k, < 2, Zkj > 4. 

The introduction of the form (3.4) is motivated by the theory of normal forms of semi- 
quasihomogeneous functions /4/. A set of polynomials ofthe form (3.4) forms an affine sub- 
manifold M in the space of polynomials for coordinates whose points are given by the set of 
coefficients a = {ar,,...,~,}. The dimensionality of Jf is 3" - n(n + l)(n + 2)/6 - n (n + 1) 2 - 1. 

I&Z k(a) denote the greatest of the multiplicities of singularities of the type Ak 

adjacent to (3.4) for a given set of coefficients a. 

Theorem 3.2. An open, everywhere compact, subset exists in M for any point a for which 
the following estimate holds 

k(a) < n (n -t I)/2 + n (n -I- 1) (n + 2)16 

see the proof in /17, 18/. 

4. Examples of elastic systems with parallelepiped symmetry. A system of 
Euler bars. The simplest example of an elastic system with parallelepiped symmetry is a set 
of identical and identically compressed plane (Eulerian /19, 20/) bars /5/. The governing 
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matrix here is proportional to unity (soft buckling) and therefore, the coexistence of stable 
modes of equilibrium of any previously assigned but general for all branching modes of the 

type is allowed in the postcritical phase. 

Karman equation for an elastic rectangular plate. Numerical results are presented in 
/12/ on bimodal bifurcations of solutions of the Karman equation for an axially compressed 

rectangular plate under different boundary conditions. It follows from this that the matrix 
N" is conditionally positive in R,” and detII'<O. In conformity with Theorem 1.3, this means 
that here the coexistence of stable unimodal (first-order) solutions is allowed in the post- 

critical stage while the existence of stable bimodal (second-order) solutions is not allowed. 

A Kirchhoff rod with elastic reinforcement. We examine a rectilinear axially compressed 
thin elastic rod in space /13-21/, framed stiffly at the ends and reinforced by an elastic 

force with the potential 

g3 (4 is the direction tangent to the middle line of the rod at the point of the parameter of 

lengths S, og s<i, and P is the parameter of the elasticity force of the reinforcement 

(reacting to the deviation of the rod end from the axis r8 in the direction ra). It is assumed 

that 1~ > 4n*. Let g1(8) and g*(s) be directions along the principal axes of inertia of a 

normal section at the point of the middle line of parameter s, and let rl -(i,O,O)', r3- (O,O,ii'. 

The Kirchhoff equation /19-21/ of the rod equilibrium configuration with the above- 

mentioned elastic reinforcement is written in the following form 

-Adx/ds + [Ax, xl + h [r3, g-*rJ -+ p <r3. g-Q& [rsg-+,I = 0 (4.1) 

(VP.& = i (w(s), Q(s)) ds, A = diag(A1, AZ, A3) 

II 

Here h is the parameter of the axial compression force, A is the elasticity tensor in 

the transverse section for which the E.L. Nikolai condition is satisfied 

2 AA 
Aa<i+V Al$ 

” is Poisson's ratio O<V<'/~,X(S) is the angular velocity of section motion as a function 
of s written in coordinates in the triplet g,(s),g,(s),g,(s);g(~) is a matrix consisting of co- 

ordinates of the vectors g, (s), g,(a), g, (s) in the basis triplet g, (O), g, ('8, 5, (0): [-4x,x1 is the 

vector product. 

The boundary condition 
g (0) = g (1) = I (4.2) 

corresponds to rigid clamping at the ends. 

The potential of (4.1) under condition (4.2) is 

(4.3) 

If x is identified with the matrix 

I 
o-%8 x2 

x= x3 0 - Xl 

-%P Xl I 0. 

then the equality X (5) = g-l (s)(dgldr)(s) is true for the matrix image X (8) of the vector x (3) 

/22/. 
Let the functional V(~,h,P,A) be obtained from (4.3) by the substitution 

1 
g = =P (vp,r,) exP ('p*%) =P (R'r), esp(x) = Zh Xk 

We assume E to be the space of functions T(S). r~IO,il of the class Ca with values in 

R3 that satisfy the condition 

p (0) = 'P (1) = 0; F = C ([O, 11, R3), H = L, (IO, 11, R3) 

(the space of continuous and the space of square summable functions in (0.11 with values in 

RS). The functional V is invariant under the involutions J,,Jl where J, (cp) = -%'1 + 'Fa'r - %7's* 

J, (rp) = 'p1r1 - 'pa'1 - (Par3 
For the localization of the parameters I= 4n'+6, A,=i, A,= 4-tp by the bifurcation 

modes we have 
e, = l/Z (sin 2ns) rlr P* = 1/2 (sin nr) r2 

Here 
a, (6, P) = 4 a* (6, P) = -6 + P 

Condition (1.6) is not satisfied here. Elementary calculations (omitted here because 
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of their length) show that h~,z<-flh~ Therefore, the governing matrix in this example is 

not conditionally-positive in R+a. 

The constraint )&>4n" formulated earlier "locks in" the mode 

e3 (a) = d (I~)(COS 6 (r)(s - 'is) - ees*ia e (+a 7‘1 

Here d(p) is a normalizing factor while B(p) if foundfromtheequation @= C(1 -ZB-'tg'i~@. 
The situation of trimodal bifurcation with parallelepiped symmetry occurs for the local- 

ization tl= 4n*. 

The author is grateful to the reviewer for useful remarks. 
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